Friday, December 2, 2016

【转载】晶体的变形

应力超过弹性极限,材料发生塑性变形,即产生不可逆的永久变形。

5.2.1单晶体的塑性变形

在常温和低温下,单晶体的塑性变形主要通过滑移方式进行的,此外,尚有孪生和扭折等方式。
1.滑移
a.滑移线与滑移带 当应力超过晶体的弹性极限后,晶体中就会产生层片之间的相对滑移,大量的层片间滑动的累积就构成晶体的宏观塑性变形。
对滑移线的观察也表明了晶体塑性变形的不均匀性,滑移只是集中发生在一些晶面上,而滑移带或滑移线之间的晶体层片则未产生变形,只是彼此之间作相对位移而已。
b.滑移系 如前所述,塑性变形时位错只沿着一定的晶面和晶向运动,这些晶面和晶向分别称为“滑移面”和“滑移方向”。晶体结构不同,其滑移面和滑移方向也不同。
通常,滑移面和滑移方向往往是金属晶体中原子排列最密的晶面和晶向。这是因为原子密度最大的晶面其面间距最大,点阵阻力最小,因而容易沿着这些面发生滑移;至于滑移方向为原子密度最大的方向是由于最密排方向上的原子间距最短,即位错b最小。
一个滑移面和此面上的一个滑移方向合起来叫做一个滑移系。在其他条件相同时,晶体中的滑移系愈多,滑移过程可能采取的空间取向便愈多,滑移容易进行,它的塑性便愈好。据此,面心立方晶体的滑移系共有{111}4<110>3=12个;体心立方晶体,可同时沿{110}{112}{123}晶面滑移,故滑移系共有{110}6<111>2+{112}12<111>1+{123}24<111>1=48个;而密排六方晶体的滑移系仅有(0001)13=3(对于这句话我保留看法,根据剑桥大学课件说法,六方晶系基面滑移中通过任意两个方向的交滑移,可以形成第三方向滑移。参考:剑桥大学-slip in HCP metals)。由于滑移系数目太少,hcp多晶体的塑性不如fccbcc的好。
c.滑移的临界分切应力  晶体的滑移是在切应力作用下进行的,但其中许多滑移系并非同时参与滑移,而只有当外力在某一滑移系中的分切应力达到一定临界值时,该滑移系方可以首先发生滑移,该分切应力称为滑移的临界分切应力。
滑移的临界分切应力是一个真实反映单晶体受力起始屈服的物理量。其数值与晶体的类型、纯度,以及温度等因素有关,还与该晶体的加工和处理状态、变形速度,以及滑移系类型等因素有关。
d.滑移时面的转动  单晶体滑移时,除滑移面发生相对位移外,往往伴随着晶面的转动,对于只有一组滑移面的hcp,这种现象尤为明显。
5.11 为单轴拉伸时晶体发生转动的力偶作用机制。
晶体受压变形时也要发生晶面转动,但转动的结果是使滑移面逐渐趋于与压力轴线相垂直,如图5.12

5.11 单轴拉伸时晶体                                5.12 晶体受压时的晶面转动
转动的力偶作用                                     a)压缩前  (b)压缩后

e.多系滑移 对于具有多组滑移系的晶体,滑移首先在取向最有利的滑移系(其分切应力最大)中进行,但由于变形时晶面转动的结果,另一组滑移面上的分切应力也可能逐渐增加到足以发生滑移的临界值以上,于是晶体的滑移就可能在两组或更多的滑移面上同时进行或交替地进行,从而产生多系滑移。
f.滑移的位错机制 实际测得晶体滑移的临界分切应力值较理论计算值低34个数量级,表明晶体滑移并不是晶体的一部分相对于另一部分沿着滑移面作刚性整体位移,而是借助位错在滑移面上运动来逐步地进行的。
晶体的滑移必须在一定的外力作用下才能发生,这说明位错的运动要克服阻力。
位错运动的阻力首先来自点阵阻力。由于点阵结构的周期性,当位错沿滑移面运动时,位错中心的能量也要发生周期性的变化,如图5.13所示。
5.13 位错滑移时核心能量的变化
5.1312为等同位置,当位错处于这种平衡位置时,其能量最小,相当于处在能谷中。当位错从位置1移动到位置2时,需要越过一个势垒,这就是说位错在运动时会遇到点阵阻力。由于派尔斯(Peierls)和纳巴罗(Nabarro)首先估算了这一阻力,故又称为派一纳(P-N)力。
                                τP-N = 2G/(1-ν)exp(-2πW/b)
式中,b为滑移方向上的原子间距,d为滑移面的面间距,ν为泊松比,W=d/(1-ν)代表位错宽度。
由派一纳力公式可知,位错宽度越大,则派一纳力越小,这是因为位错宽度表示了位错所导致的点阵严重畸变区的范围.宽度大则位错周围的原子就能比较接近于平衡位置,点阵的弹性畸变能低,故位错移动时其他原子所作相应移动的距离较小,产生的阻力也较小。
位错运动的阻力除点阵阻力外,位错与位错的交互作用产生的阻力;运动位错交截后形成的扭折和割阶,尤其是螺型位错割阶将对位错起钉扎作用,致使位错运动的阻力增加;位错与其他晶体缺陷如点缺陷,其他位错、晶界和第二相质点等交互作用产生的阻力,对位错运动均会产生阻力,导致晶体强化。
2.孪生
孪生是塑性变形的另一种重要形式,它常作为滑移不易进行时的补充。
a.孪生变形过程 当面心立方晶体在切应力作用下发生孪生变形时,晶体内局部地区的各个(111晶面沿着方向(图5.16aAC′),产生彼此相对移动距离为的均匀切变。这样的切变并未使晶体的点阵类型发生变化,但它却使均匀切变区中的晶体取向发生变更,变为与未切变区晶体呈镜面对称的取向。这一变形过程称为孪生。变形与未变形两部分晶体合称为孪晶;均匀切变区与未切变区的分界面(即两者的镜面对称面)称为孪晶界;发生均匀切变的那组晶面称为孪晶面111;孪生面的移动方向(即方向)称为孪生方向。
5.16 面心立方晶体孪生变形示意图
a)孪晶面和孪生方向 b)孪生变形时原子的移动

b.孪生的特点
1)孪生变形也是在切应力作用下发生的,并通常出现于滑移受阻而引起的应力集中区,因此,孪生所需的临界切应力要比滑移时大得多。
2)孪生是一种均匀切变,即切变区内与孪晶面平行的每一层原子面均相对于其毗邻晶面沿孪生方向位移了一定的距离,且每一层原子相对于孪生面的切变量跟它与孪生面的距离成正比。
3)孪晶的两部分晶体形成镜面对称的位向关系。
c.孪晶的形成 在晶体中形成孪晶的主要方式有三种:一是通过机械变形而产生的孪晶,也称为“变形孪晶”或“机械孪晶”,它的特征通常呈透镜状或片状;其二为“生长孪晶”,它包括晶体自气态(如气相沉积)、液态(液相凝固)或固体中长大时形成的孪晶;其三是变形金属在其再结晶退火过程中形成的孪晶,也称为“退火孪晶”,它往往以相互平行的孪晶面为界横贯整个晶粒,是在再结晶过程中通过堆垛层错的生长形成的。它实际上也应属于生长孪晶,系从固体中生长过程中形成。
通常,对称性低、滑移系少的密排六方金属如CdZnMg等往往容易出现孪生变形。
d.孪生的位错机制 由于孪生变形时,整个孪晶区发生均匀切变,其各层面的相对位移是借助一个不全位错(肖克莱不全位错)运动而造成的。
3.扭折
由于各种原因,晶体中不同部位的受力情况和形变方式可能有很大的差异,对于那些既不能进行滑移也不能进行孪生的地方,晶体将通过其他方式进行塑性变形。
为了使晶体的形状与外力相适应,当外力超过某一临界值时晶体将会产生局部弯曲,这种变形方式称为扭折,变形区域则称为扭折带。扭折变形与孪生不同,它使扭折区晶体的取向发生了不对称性的变化。扭折是一种协调性变形,它能引起应力松弛,使晶体不致断裂。

5.2.2多晶体的塑性变形

实际使用的材料通常是由多晶体组成的。室温下,多晶体中每个晶粒变形的基本方式与单晶体相同,但由于相邻晶粒之间取向不同,以及晶界的存在,因而多晶体的变形既需克服晶界的阻碍,又要求各晶粒的变形相互协调与配合,故多晶体的塑性变形较为复杂。
1.晶粒取向的影响
晶粒取向对多晶体塑性变形的影响,主要表现在各晶粒变形过程中的相互制约和协调性。
当外力作用于多晶体时,由于晶体的各向异性,位向不同的各个晶体所受应力并不一致。处于有利位向的晶粒首先发生滑移,处于不利方位的晶粒却还未开始滑移。但多晶体中每个晶粒都处于其他晶粒包围之中,它的变形必然与其邻近晶粒相互协调配合,不然就难以进行变形,甚至不能保持晶粒之间的连续性,会造成空隙而导致材料的破裂。为了使多晶体中各晶粒之间的变形得到相互协调与配合,每个晶粒不只是在取向最有利的单滑移系上进行滑移,而必须在几个滑移系其中包括取向并非有利的滑移系上进行,其形状才能相应地作各种改变。理论分析指出,多晶体塑性变形时要求每个晶粒至少能在5个独立的滑移系上进行滑移。可见,多晶体的塑性变形是通过各晶粒的多系滑移来保证相互间的协调,即一个多晶体是否能够塑性变形,决定于它是否具备有5个独立的滑移系来满足各晶粒变形时相互协调的要求。这就与晶体的结构类型有关:滑移系甚多的面心立方和体心立方晶体能满足这个条件,故它们的多晶体具有很好的塑性;相反,密排六方晶体由于滑移系少,晶粒之间的应变协调性很差,所以其多晶体的塑性变形能力可低。
2.晶界的影响
从第3章得知,晶界上原子排列不规则,点阵畸变严重,何况晶界两侧的晶粒取向不同,滑移方向和滑移面彼此不一致,因此,滑移要从一个晶粒直接延续到下一个晶粒是极其困难的,在室温下晶界对滑移具有阻碍效应。
对只有2~3个晶粒的试样进行拉伸试验表明,在晶界处呈竹节状(见图5.22)。

5.22 经拉伸后晶界处呈竹节状      5.23 位错在相邻晶粒中的作用示意图多晶体试样经                                                                                 拉伸后,每一晶粒中的滑移带都终止在晶界附      近,
如图5.23所示。在变形过程中位错难以通过晶界被堵塞在晶界附近。这种在晶界附近产生的位错塞积群会对晶内的位错源产生反作用力。此反作用力随位错塞积的数目n而增大:
式中,t0为作用于滑移面上外加分切应力;L位错源至晶界之距离;k为系数,螺位错k=1位错k=1-v。当它增大到某一数值时,可使位错源停止开动。使晶体显著强化。
因此,对多晶体而言,外加应力必须大至足以激发大量晶粒中的位错源动作,产生滑移,才能觉察到宏观的塑性变形。
由于晶界数量直接决定于晶粒的大小,因此,晶界对多晶体起始塑变抗力的影响可通过晶粒大小直接体现。实践证明,多晶体的强度随其晶粒细化而提高。多晶体的屈服强度ss与晶粒平均直径d的关系可用著名的霍尔—佩奇(Hall-Petch)公式表示:
式中,s0反映晶内对变形的阻力,相当于极大单晶的屈服强度;K反映晶界对变形的影响系数,与晶界结构有关。
进一步实验证明,霍尔—佩奇公式适用性甚广。因此,一般在室温使用的结构材料都希望获得细小而均匀的晶粒。因为细晶粒不仅使材料具有较高的强度、硬度,而且也使它具有良好的塑性和韧性,即具有良好的综合力学性能。
但是,当变形温度高于0.5Tm(熔点)以上时,由于原子活动能力的增大,以及原子沿晶界的扩散速率加快,使高温下的晶界具有一定的粘滞性特点,它对变形的阻力大为减弱,即使施加很小的应力,只要作用时间足够长,也会发生晶粒沿晶界的相对滑动,成为多晶体在高温时一种重要的变形方式。此外,在高温时,多晶体特别是细晶粒的多晶体还可能出现另一种称为扩散性蠕变的变形机制,这个过程与空位的扩散有关。
据此,在多晶体材料中往往存在一“等强温度TE”,低于TE时,晶界强度高于晶粒内部的;高于TE时则得到相反的结果(见图5.27)。
5.27 等温强度示意图

5.2.3合金的塑性变形

按合金组成相不同,主要可分为单相固溶体合金和多相合金,它们的塑性变形又各具有不同特点。
1单相固溶休合金的塑性变形
和纯金属相比最大的区别在于单相固溶体合金中存在溶质原子。溶质原子对合金塑性变形的影响主要表现在固溶强化作用,提高了塑性变形的阻力,此外,有些固溶体会出现明显的屈服点和应变时效现象,现分述如下:
a.团溶强化 溶质原子的存在及其固溶度的增加,使基体金属的变形抗力随之提高。比较纯金属与不同浓度的固溶体的应力应变曲线(见图5.29),
5.29 溶有镁后的应力-应变曲线
由图5.29可看到溶质原子的加人不仅提高了整个应力应变曲线的水平,而且使合金的加工硬化速率增大。
不同溶质原子所引起的固溶强化效果存在很大差别。
1)溶质原子的原子数分数越高,强化作用也越大,特别是当原子数分数很低时的强化效应更为显著。
2)溶质原子与基体金属的原子尺寸相差越大,强化作用也越大。
3)间隙型溶质原子比置换原子具有较大的固溶强化效果。
4)溶质原子与基体金属的价电子数相差越大,固溶强化作用越显著。
b.屈服现象与应变时效  5.31为低碳钢典型的应力应变曲线,与一般拉伸曲线不同,出现了明显的屈服点。当应力达到上屈服点时,首先在试样的应力集中处开始塑性变形,并在试样表面产生一个与拉伸轴约成45°交角的变形带吕德斯(Lüders)带,与此同时,应力降到下屈服点。随后这种变形带沿试样长度方向不断形成与扩展,从而产生拉伸曲线平台的屈服伸长。其中,应力的每一次微小波动,即对应一个新变形带的形成。当屈服扩展到整个试样标距范围时,屈服延伸阶段就告结束。
5.31 低碳钢退火态的工程应力应变曲线及屈服现象
通常认为在固溶体合金中,溶质原子或杂质原子可以与位错交互作用而形成溶质原子气团,即所谓的Cottrell气团。间隙型溶质原子和位错的交互作用很强,位错被牢固地钉扎住。位错要运动,必须在更大的应力作用下才能挣脱Cottrell气团的钉扎而移动,这就形成了上屈服点;而一旦挣脱之后位错的运动就比较容易,因此有应力降落,出现下屈服点和水平台。这就是屈服现象的物理本质。
与低碳钢屈服现象相关连的还存在一种应变时效行为,如图5.32所示。
5.32 低碳钢的拉伸试验
a-预塑性变形 b-去载后立即再行加载 c-去载后放置一段时间或在200℃加热后再加载
当退火状态低碳钢试样拉伸到超过屈服点发生少量塑性变形后(曲线a)卸载,然后立即重新加载拉伸,则可见其拉伸曲线不再出现屈服点(曲线b),此时试样不发生屈服现象。如果不采取上述方案,而是将预变形试样在常温下放置几天或经200℃左右短时加热后再行拉伸,则屈服现象又复出现,且屈服应力进一步提高(曲线c),此现象通常称为应变时效。
同样,Cottrell气团理论能很好地解释低碳钢的应变时效。当卸载后立即重新加载,由于位错已经挣脱出气团的钉扎,故不出现屈服点;如果卸载后放置较长时间或经时效则溶质原子已经通过扩散而重新聚集到位错周围形成了气团,故屈服现象又复出现。
2.多相合金的塑性变形
由于第二相的数量、尺寸、形状和分布不同,它与基体相的结合状况不一、以及第二相的形变特征与基体相的差异,使得多相合金的塑性变形更加复杂。
根据第二相粒子的尺寸大小可将合金分成两大类:若第二相粒子与基体晶粒尺寸属同一数量级,称为聚合型两相合金;若第二相粒子细小而弥散地分布在基体晶粒中,称为弥散分布型两相合金。
a.聚合型合金的塑性变形  当组成合金的两相晶粒尺寸属同一数量级,且都为塑性相时,则合金的变形能力取决于两相的体积分数。
实验证明,这类合金在发生塑性变形时,滑移往往首先发生在较软的相中,如果较强相数量较少时,则塑性变形基本上是在较弱的相中;只有当第二相为较强相,且体积分数j大于30时,才能起明显的强化作用。
b.弥散分布型合金的塑性变形  第二相以细小弥散的微粒均匀分布于基体相中时,将会产生显著的强化作用。第二相粒子的强化作用是通过其对位错运动的阻碍作用而表现出来的。通常可将第二相粒子分为“不可变形的”和“可变形的”两类。
1)不可变形粒子的强化作用。不可变形粒子对位错的阻碍作用如图5.34所示。
5.34 位错绕过第二相粒子的示意图
当运动位错与其相遇时,将受到粒子阻挡,使位错线绕着它发生弯曲。随着外加应力的增大,位错线受阻部分的弯曲更剧,以致围绕着粒子的位错线在左右两边相遇,于是正负位错彼此抵消,形成包围着粒子的位错环留下,而位错线的其余部分则越过粒子继续移动。显然,位错按这种方式移动时受到的阻力是很大的,而且每个留下的位错环要作用于位错源反向应力,故继续变形时必须增大应力以克服此反向应力,使流变应力迅速提高。
根据位错理论,迫使位错线弯曲到曲率半径为R时所需切应力为
此时由于R=l/2,所以位错线弯曲到该状态所需切应力为
上述位错绕过障碍物的机制是由奥罗万EOrowan)首先提出的,故通常称为奥罗万机制,它已被实验所证实。
2)可变形微粒的强化作用。第二相粒子为可变形微粒时,位错将切过粒子使之随同基体一起变形。在这种情况下,强化作用主要决定于粒子本身的性质,以及与基体的联系,其强化机制甚为复杂,且因合金而异。

5.2.4塑性变形对材料组织与性能的影响

塑性变形不但可以改变材料的外形和尺寸,而且能够使材料的内部组织和各种性能发生变化,在变形的同时,伴随着变性。
1.显微组织的变化
经塑性变形后,金属材料的显微组织发生明显的改变。除了每个晶粒内部出现大量的滑移带或孪晶带外,随着变形度的增加,原来的等轴晶粒将逐渐沿其变形方向伸长。当变形量很大时,晶粒变得模糊不清,晶粒已难以分辨而呈现出一片如纤维状的条纹,称为纤维组织。纤维的分布方向即是材料流变伸展的方向。
2亚结构的变化
晶体的塑性变形是借助位错在应力作用下运动和不断增殖。随着变形度的增大,晶体中的位错密度迅速提高,经严重冷变形后,位错密度可从原先退火态的106~107cm-2增至1011~1012cm-2
经一定量的塑性变形后,晶体中的位错线通过运动与交互作用,开始呈现纷乱的不均匀分布,并形成位错缠结。进一步增加变形度时,大量位错发生聚集,并由缠结的位错组成胞状亚结构。此时,变形晶粒是由许多这种胞状亚结构组成,各胞之间存在微小的位向差。随着变形度的增大,变形胞的数量增多、尺寸减小。如果经强烈冷轧或冷拉等变形,则伴随纤维组织的出现,其亚结构也将由大量细长状变形组成。
3.性能的变化
材料在塑性变形过程中,随着内部组织与结构的变化,其力学、物理和化学性能均发生明显的改变。
a.加工硬化  金属材料经冷加工变形后,强度(硬度)显著提高,而塑性则很快下降,即产生了加工硬化现象。加工硬化是金属材料的一项重要特性,可被用作强化金属的途径。特别是对那些不能通过热处理强化的材料如纯金属,以及某些合金,如奥氏体不锈钢等,主要是借冷加工实现强化的。
5.40 单晶体的切应力应变曲线,显示塑性变形的三个阶段
5.40是金属单晶体的典型应力应变曲线(也称加工硬化曲线),其塑性变形部分是由三个阶段所组成:
I阶段——易滑移阶段:当t达到晶体的tc后,应力增加不多,便能产生相当大的变形。此段接近于直线,其斜率q I)即加工硬化率低,一般q I为~10-4G数量级(G为材料的切变模量)。
Ⅱ阶段——线性硬化阶段:随着应变量增加,应力线性增长,此段也呈直线,且斜率较大,加工硬化十分显著,q G/300,近乎常数。
阶段——抛物线型硬化阶段:随应变增加,应力上升缓慢,呈抛物线型,q逐渐下降。
各种晶体的实际曲线因其晶体结构类型、晶体位向、杂质含量,以及试验温度等因素的不同而有所变化,但总的说,其基本特征相同,只是各阶段的长短通过位错的运动、增殖和交互作用而受影响,甚至某一阶段可能就不再出现。
5.41 典型的面心立方、体心立方和密排六方金属单晶体的应力应变曲线,
5.41为三种典型晶体结构金属单晶体的硬化曲线,其中面心立方和体心立方晶体显示出典型的三阶段,至于密排六方金属单晶体的第阶段通常很长,远远超过其他结构的晶体,以致于阶段还未充分发展时试样就已经断裂了。
多晶体的塑性变形由于晶界的阻碍作用和晶粒之间的协调配合要求,各晶粒不可能以单一滑移系动作而必然有多组滑移系同时作用,因此多晶体的应力应变曲线不会出现单晶曲线的第I阶段,而且其硬化曲线通常更陡,细晶粒多晶体在变形开始阶段尤为明显(见图5.42)。
5.42  单晶与多晶的应力应变曲线比较(室温)  aAl bCu
有关加工硬化的机制,即流变应力是位错密度的平方根的线性函数,这已被许多实验证实。因此,塑性变形过程中位错密度的增加及其所产生的钉扎作用是导致加工硬化的决定性因素。
b.其他性能的变化 经塑性变形后的金属材料,由于点阵畸变,空位和位错等结构缺陷的增加,使其物理性能和化学性能也发生一定的变化。如塑性变形通常可使金属的电阻率增高,增加的程度与形变量成正比。另外,塑性变形后,金属的电阻温度系数下降,磁导率下降,热导率也有所降低,铁磁材料的磁滞损耗及顽力增大。
由于塑性变形使得金属中的结构缺陷增多,自由升高,因而导致金属中的扩散过程加速,金属的化学活性增大,腐蚀速度加快。
4.形变织构
在塑性变形中,随着形变程度的增加,各个晶粒的滑移面和滑移方向都要向主形变方向转动,逐渐使多晶体中原来取向互不相同的各个晶粒在空间取向上呈现一定程度的规律性,这一现象称为择优取向,这种组织状态则称为形变织构。
形变织构随加工变形方式不同主要有两种类型:拔丝时形成的织构称为丝织构,其主要特征为各晶粒的某一晶向大致与拔丝方向相平行;轧板时形成的织构称为板织构,其主要特征为各晶粒的某一晶面和晶向分别趋于同轧面与轧向相平行。
5.残余应力
塑性变形中外力所作的功除大部分转化成热之外,还有一小部分以畸变能的形式储存在形变材料内部。这部分能量叫做储存能。储存能的具体表现方式为:宏观残余应力、微观残余应力及点阵畸变。按照残余应力平衡范围的不同,通常可将其分为三种:
1)第一类内应力,又称宏观残余应力,它是由工件不同部分的宏观变形不均匀性引起的,故其应力平衡范围包括整个工件。例如,将金属棒施以弯曲载荷,则上边受拉而伸长,下边受到压缩;变形超过弹性极限产生了塑性变形时,则外力去除后被伸长的一边就存在压应力,短边为张应力。这类残余应力所对应的畸变能不大,仅占总储存能的0.1左右。
2)第二类内应力,又称微观残余应力,它是由晶粒或亚晶粒之间的变形不均匀性产生的。其作用范围与晶粒尺寸相当,即在晶粒或亚晶粒之间保持平衡。这种内应力有时可达到很大的数值,甚至可能造成显微裂纹并导致工件破坏。
3)第三类内应力,又称点阵畸变。其作用范围是几十至几百纳米,它是由于工件在塑性变形中形成的大量点阵缺陷(如空位、间隙原子、位错等)引起的。变形金属中储存能的绝大部分(80~90)用于形成点阵畸变。这部分能量提高了变形晶体的能量,使之处于热力学不稳定状态,故它有一种使变形金属重新恢复到自由最低的稳定结构状态的自发趋势,并导致塑性变形金属在加热时的回复及再结晶过程。
转自:http://netclass.csu.edu.cn/NCourse/hep075/doc/chap5/52.htm

Tuesday, November 29, 2016

[转载] 能带结构和态密度图的绘制及初步分析

1.1 能带简介
在形成分子时,原子轨道构成具有分立能级的分子轨道。晶体是由大量的原子有序堆积而成的。由原子轨道所构成的分子轨道的数量非常之大,以至于可以将所形成的分子轨道的能级看成是准连续的,即形成了能带。晶体中电子所能具有的能量范围,在物理学中往往形象化地用一条条水平横线表示电子的各个能量值。能量愈大,线的位置愈高,一定能量范围内的许多能级(彼此相隔很近)形成一条带,称为能带。
在固体物理学中,固体的能带结构(又称电子能带结构,如图一所示)描述了禁止或允许电子所带有的能量,这是周期性晶格中的量子动力学电子波衍射引起的。材料的能带结构决定了多种特性,特别是它的电子学和光学性质。

1.2能带结构的计算
能带结构目前是采用第一性原理(ab initio)计算所得到的常用信息。大致可以分为价带、禁带和导带三部分(如图一所示),导带和价带之间的空隙称为能隙,用Eg表示。计算材料的能带结构即色散曲线E(k),可以使用Materials Studio或VASP软件进行。以下将介绍用Materials Studio进行能带结构计算的基本步骤,以ZnS半导体为例:
(1)打开Materials Studio界面,点击File→ Import→ Structures→ semiconductors,选择ZnS.msi,得到ZnS.xsd文件,如图二(a)所示;

图二 ZnS晶体结构
(2)变换风格:单击右键→ Display Style→ Atom选项中选择Ball and stick。如图二(b)所示;
(3)结构优化:计算能带结构前需进行结构优化。单击CASTEP Calculation,设置如下图三所示,点击Run进行。优化成功会自动生成GeomOpt文件夹。

图三 结构优化
(4)能带结构计算:点击GeomOpt文件夹中的ZnS.xsd。单击CASTEP Calculation,设置如下图四所示,点击Run进行。得到CASTEP Energy文件夹。

图四 能带结构计算
(5)能带结构图的绘制:点击CASTEP Energy文件夹中的ZnS.xsd→ CASTEP Analysis→ Band structure→ View。得到ZnS Band Structure.xcd,具体能带信息见BandStr.castep,如图五。

图五 能带结构图
BandStr.castep中记录的信息十分详尽,包括电子数目(自旋向上与自旋向下)、能带数目、计算耗时等。
(6)初步分析:
从能带结构图中得到的信息,判断直接带隙或间接带隙、带隙、价带顶与导带底能量。在origin操作的具体步骤是:把能带图拷贝到Origin中→ 全选→ 作图,得到图六(a)。

图六 能带结构图
具体分析如下:
①导带底与价带顶都在k空间的Γ点上,所以ZnS晶体为直接带隙。
②价带顶位于0 eV,导带顶位于2.053 eV。
③带隙为2.053 eV。
④由CASTEP Calculation中可看出布里渊区中k空间的路径由X→R→M→G,如图六(b)。
【态密度图的绘制及初步分析】
2.1 态密度简介
原则上讲,态密度可以作为能带结构的一个可视化结果。很多分析和能带的分析结果可以一一对应,很多术语也和能带分析相通。但是因为它更直观,因此在结果讨论中用得比能带分析更广泛一些。在电子能级为准连续分布的情况下,单位能量间隔内的电子态数目。即能量介于E~E+△E之间的量子态数目△Z与能量差△E之比,即为态密度。能态密度与能带结构密切相关,是一个重要的基本函数。固体的许多特性,如电子比热、光和X射线的吸收和发射等,都与能态密度有关。
2.2 态密度(DOS)的计算
态密度图可以反映出电子在各个轨道的分布状况,反映原子与原子之间的相互作用情况并且还可以揭示化学键的重要信息。态密度有分波态密度(PDOS)和总态密度(TDOS)两种形式。以下将介绍用Materials Studio进行态密度计算的基本步骤,仍以ZnS半导体为例:
(1)前三步与计算能带结构的一致。
(2)点击GeomOpt文件夹中的ZnS.xsd。单击CASTEP Calculation,设置如下图七所示,点击Run。得到ZnS CASTEP Energy(2)文件,其中包含计算的结果。

图七 DOS与PDOS的计算
(3)打开其中的ZnS.xsd→ CASTEP Analysis→ Density of states → Full DOS→ View。得到TDOS,可以将图形拷贝到Origin中,如下图所示。

图八 DOS的计算
(4)分波态密度的计算:打开其中的ZnS.xsd→ CASTEP Analysis→ Density of states → Partial勾上→ 选择s、p、d、f。得到ZnS PDOS.xsd。可以将图形拷贝到Origin中,如下图十所示。(注意:因为不是在origin的workbook表格里不能都选中,这样会有杂线,操作如下,不要选择杂线的列)

图九 PDOS的设置

图十 PDOS的作图
注意你要标注一下各个颜色对应的轨道(s,p,d)。从对比图可以看出总的态密度由各自哪些轨道贡献的。
(5)态密度图的初步分析:将PDOS图与DOS图放在一起对比,如图十一所示。
①DOS图也可分析能隙特性:若Fermi能级处于DOS值为零的区间中,说明该体系是半导体或绝缘体;若有分波DOS跨过费米能级,则该体系是金属。而两个尖峰之间的DOS并不为零。赝能隙直接反映了该体系成键的共价性的强弱:越宽,说明共价性越强。
由图中可知,Fermi能级处于DOS接近0但又不全为0。说明,该晶体大部分显半导体性质,但金属性较强。
③观察DOS由各自哪些轨道贡献的:Fermi能级左侧为价带,主要由d、p轨道组成,s轨道贡献也有一部分;Fermi能级右侧为导带,主要由s、p轨道组成。
如果具体要分析是Zn还是S的那个轨道对DOS贡献较大仍需进行下一步。

图十一 DOS与PDOS的初步分析
(6)每个原子的PDOS:操作步骤如下,打开ZnS.xsd→ 选定Zn(或S)原子→ 进入CASTEP Analysis → 进行如下设置→ View。依次得到Zn与S的PDOS图,如下。


图十二 单个原子的PDOS分析

图十三 分别是Zn和S的PDOS图
分析:将以上两个PDOS与总的DOS进行对比
①价带:Zn的d轨道与S的p轨道是价带的主要组成来源,S的s轨道有小部分贡献。
②导带:Zn的s、p轨道与S的p轨道是导带的主要来源。

【总结】
能带结构与态密度的分析都是用于探究固体的结构性质的手段,它能很好的预测材料的性质(如成键的趋势、化学键的组成等)、用理论去解释实验现象。